L HighQSoft

CORBA File Server Specification

CORBAFileServer 2.1.9

HighQSoft GmbH Andreas Hofmann 2015/10/07

mailto:andreas.hofmann@highqsoft.de

Contents

1 Introduction

2 Use Cases
2.1 5ave ..o e
2.2 Read e
2.3 Delete e
2.4 Rename e e e e e e

3 Server

3.1 Filename Handler
3.2 Security Handler
3.3 Terminator e
3.4 Registration Nameo
3.5 String from Command Line L oL o
3.6 Starting as MS-Windows System Service oL
3.7 Using SSL for secure socket-based Transfers

4 Interfaces

5 Plugin Support

5.1 Imterface L
5.2 Initialization of a plugin L
5.3 Default Implementation e
54 Default Client

6 Licensing

7 Properties

8 Examples

B~ W W W W

© © © 0w g o ot W;

[y
[y

25
25
25
26
26

29

31

37

ii CONTENTS

9 Modification History 41

CORBA File Server Specification

O © 2015/10/07 CORBAFileServer 2.1.9
u

X nghQSoft HighQSoft Andreas Hofmann

http://www.highqsoft.com
mailto:andreas.hofmann@highqsoft.de

Chapter 1

Introduction

ASAM ODS Servers are able to adminstrate the access to external files. The datatype DT_-
EXTERNALREFERENCE was defined for that issue. This datatype includes the URL location of the
file, a MIME type string and a placeholder for detailed description. The file should be saved at a
central system because every user should have access to it.

The ASAM ODS specification doesn’t define how a client can access these files. It depends on the
particular environment what kind of protocol should be used to get the files. The URL location
may define the access protocol but the security information for that must be provided by the
client. To be a generic client, the implementation must be able to handle different protocols with
different security models.

Here are some examples to point out just some problems:

Secure File Transfer Protocol (sftp)

This protocol is just a representative type of protocol ensuring a secure file network access.
The security is the problem in that context. The system administrator has to register all
ASAM ODS client users. This inceases the adminstrativ effort.

Hyper Text Transfer Protocol (http)

This protocol is designed for a public file access. Security is not the first aspect for applications
using that protocol. In parallel a secure variant exists, but the problem for that is the same
as for sftp.

Network Mounted Devices

Beside the security problems this kind of file share has the problem, that the client defines
the place in the local filesystem where the device is mounted. But the URL location of the
ASAM ODS entry is not useable for that intension.

There is no system that solves the problems for an ASAM ODS client without additional effort
for administration.

The issue of the CORBAFileServer is to close that gap and to optimize the effort. Of course the
client must implement additional code to handle external references.

Additionally there may be problems that cannot be solved by the client implementation, caused
by wrong handling of the files and the according database references.

e File was deleted, reference already exists

2 Introduction

e References was cleaned, file exists and need disc resources

These kinds of problems exist latently amd can be solved by a periodical database content analysis.

CORBA File Server Specification

O © 2015/10/07 CORBAFileServer 2.1.9
u

X nghQSoft HighQSoft Andreas Hofmann

http://www.highqsoft.com
mailto:andreas.hofmann@highqsoft.de

Chapter 2

Use Cases

This chapter descibes the use-cases for the service offered by the CORBAFileServer.

Think about an application model that defines an external reference to save a documentation file
containing the description of the test equipment. The Applicationelement derived from AoTestE-
quipment gets the attribute that has the datatype DS_EXTERNALREFERENCE.

2.1 Save

The user has written the document that describes the equipment that he wants to use for the next
tests. The client GUI offers the possibility to save the document at the designated attribute.

The client software uses the CORBA naming service to get the reference of the CORBAFileServer.
The access to the CORBA naming service should be known, because the ASAM ODS server is
also registered at this service. The software uses an API method to send the ASAM ODS session
for authentication. The CORBAFileServer uses the transfered ASAM ODS session for a security
check. TIs the session valid and was the check successful the access will be allowed. The client
software is able to use the API to save/transfer the file at a server location. The server itself
defines the URL necessary for the location entry of the attribute. The ASAM ODS security
ensures that the client is allowed to write the attribute.

2.2 Read

The user wants to read a document that is referenced by the attribute.

The ASAM ODS security ensures that the client is allowed to read the attribute. The client
software uses the CORBA naming service to get the reference of the CORBAFileServer. The
access to the CORBA naming service should be known, because the ASAM ODS server is also
registered at this service. The software uses an API method to send the ASAM ODS session for
authentication. The client uses the API method to get the file from CORBAFileServer by the
stored URL location. The client it self must handle the data stream (write it to file or redirect it
directly to an application).

2.3 Delete

The users wants to delete the document referenced by the attribut.

4 Use Cases

The ASAM ODS security ensures that the client is allowed to delete the attribute. The client
software uses the CORBA naming service to get the reference of the CORBAFileServer. The
access to the CORBA naming service should be known, because the ASAM ODS server is also
registered at this service. The software uses an API method to send the ASAM ODS session for
authentication. The client uses the API method to order the deletion of the file at server location.

2.4 Rename

The users wants to rename the document referenced by the attribut.

The ASAM ODS security ensures that the client is allowed to write the attribute. The client
software uses the CORBA naming service to get the reference of the CORBAFileServer. The
access to the CORBA naming service should be known, because the ASAM ODS server is also
registered at this service. The software uses an API method to send the ASAM ODS session for
authentication. The client uses the API method to order the rename action of the file at server
location. This use-case can also be used to realize a kind of waste basket to collect all unused
files.

CORBA File Server Specification

O © 2015/10/07 CORBAFileServer 2.1.9
u

X nghQSoft HighQSoft Andreas Hofmann

http://www.highqsoft.com
mailto:andreas.hofmann@highqsoft.de

Chapter 3

Server

In addition to the requirment by the client server interface, there are three other interfaces to
increase the flexibility of the server.

3.1 Filename Handler

The main issue of the server is the creation and the adminstration of the serverside folder structure.
The simplest case is the handling of a filesystem, but it is possible to have other complecated
systems to save the byte streams comming from the client. The client should not involved in the
type of storage and it should be transparent for the user.

To fulfill the different requirements the server should define a interface to change the behavior.
Different installations may have different issues.

A class that should handle the datastorage names must implement the defined interface
com.highgsoft.corbafileserver.FilenameHandlerIF. At server startup time the parameter
CORBAFileServer.FilenameHandler can be used to pass the classname to the server implemen-
tation. The desired class must be localizable by the classpath of the JAVA VM.

The server uses a default class that implements the following filename rules:

e The folder structure depends on the actual date.
e The root directory can be configured via the keyword CORBAFileServer.RootDir

e If the root directory is mnot specified the implementation wuses the folder
${user.home}/CORBAFileServer.

e The implementation tries to save the file to the subfolder year/month/day

e To avoid overwritting of files the implementation appends subfolders step by step
[/minutes] [/seconds] [/milliseconds].

e If the file already exists inside the millisecond folder, the implementation throws an exception.

e The implemenation generated a file URL file://[hostname]/[full local path]
If you look at this interface you can see that CORBAFileServer passes the ASAM ODS session

object, the id of the application element and the id of the instance element to the method that
solves that problem. By this parameters you are able to build variable models for the datastorage.

6 Server

The FilenameHandler is also reponsable for the rename and delete task. The de-
fault implementation writes the removed files to a waste folder that can be specified
via the property CORBAFileServer.WasteDir. The default value of this property is
getRootDirectory()+File.separator+"waste".

3.1.1 The ODS FilenameHandler

There is a filename handler which use the definitions of the ASAM ODS Specification 5.2.0.
The finanamehandler is implemented in com.highgsoft.corbafileserver.0DSFilenameHandler
This filename handler loads context variables FILE MODE, FILE_NOTATION, FILE_ROOT_EXTREF
and FILE_SYMBOLS to find the location of the files and returns the URL accoring the settings of
the ODS server.

3.2 Security Handler

Another task is the security handling. Different use-cases are possible depending on the destination
environment. That is the reason why the server defines an interface for that issue. It is defined in
the class com.highgsoft.corbafileserver.SecurityHandlerIF and can be configured by the
property keyword CORBAFileServer.SecurityHandler.

A default implementation also exists that is used when no other class is given. This implementation
just checks the incoming session by getting its name.

The method that should implement the task gets the ASAM ODS session, the id of the application
element and the id of the instanc element. By this parameters you are able to build variable models
for the security handling.

There is a switch defined via the property keyword CORBAFileServer.SecurityActive to disable
the security handler. If the property value assigns false, the handler will not be used during
whole runtime. The security handler is active by default. This switch is changeable at startup
time only.

3.2.1 Writing a Security Handler

The best way to start is to extend the default security handler. The
class com.highgsoft.corbafileserver.SecurityHandler implements the
com.highgsoft.corbafileserver.SecurityHandlerIF. It checks just on valid ASAM ODS
sessions by calling the getName () method of the AoSession.

class MySecurityHandler extends com.highgsoft.corbafileserver.SecurityHandler {

}

If your implementation needs some parameters, it can use the
com.highgsoft.corbafileserver.StreamFactory singelton class that provides access to
the properties of the configuration of the CORBAFileServer.

StreamFactory factory = StreamFactory.getInstance();
String classname = factory.getProperty("MySecurityHandler.OutputFile",
new File(System.getProperty("user.dir"), "MySecurityHandler.log").toString());

These properties can be specified in the CORBAFileServer.cfg file in the [PARAMETERS] section:

CORBA File Server Specification

O © 2015/10/07 CORBAFileServer 2.1.9
u

X nghQSoft HighQSoft Andreas Hofmann

http://www.highqsoft.com
mailto:andreas.hofmann@highqsoft.de

3.3 Terminator 7

[Parameters]

-CORBAFileServer.ServiceName = anyName
-CORBAFileServer.NameServiceHost = anyHost
-CORBAFileServer.NameServicePort = anyPort
-CORBAFileServer.RootDir = anyFolder

-MySecurityHandler.OutputFile c:\tmp\my.log

To implement your issues, just overwrite the method of interest. If you want to check the default
behavior first, just call the method of the super class.

If the implementation is done, create a new jar file and add it to the [CLASSPATH] section of the
configuration.

[CLASSPATH]
%CORBAFileServer_ROOT%\jar\CORBAFileServer.jar
%CORBAFileServer_ROOT%\jar\MySecurityHandler. jar

3.3 Terminator

This class is optional and will be used to terminate the transaction. In compare to the filename
handler the class can use the ASAM ODS session, the id of the application element and the id of
the instance element to do that job. Different ideas can be realized by this class.

The interface is defined in the class com.highqsoft.corbafileserver.TerminatorIF
and the name of implementation can be pass to server via the property keyword
CORBAFileServer.Terminator.

The class must implement the following method:

void terminateForInstance (AoSession aoSession,
String name,
T_LONGLONG aid,
T_LONGLONG iid,
String parameter) throws CORBAFileServerException;

aoSession

the ASAM ODS session.
name

the name of the file.
aid

the application element id.
iid

the instance element id.
parameter

the parameter string. The content depends on the server side terminate implementation.

A default implementation doesn’t exist.

But there is an useful example defined in class com.highqsoft.corbafileserver.TerminateProcess.
This class creates a process that is defined by property CORBAFileServer.Terminator.Command
or, if not present, by the client parameter string.

CORBA File Server Specification

© 2015/10/07 CORBAFileServer 2.1.9 O
n

leghQSof‘t

HighQSOft Andreas Hofmann

http://www.highqsoft.com
mailto:andreas.hofmann@highqsoft.de

8 Server

The property CORBAFileServer.Terminator.Command allows to specify the command line string.
The class uses the java.text.MessageFormat.format() class to format the command string.
There are four possible parameters:

{0}

the name of the file.
{1}

the application element id.
{2}

the instance element id.

{3}

the parameter coming from client.

An example for a simple ant call may be:

ant -DCORBAFileServer.Filename="{0}" -F mybuild.xml

3.4 Registration Name

The server register itself at the CORBA naming service at startup time. The server must use a
name and its CORBA reference for that issue.

The implementation handles different properties to control the name, that must be known at client
side.

First of all there are the properties CORBAFileServer.RegistrationFormat and
CORBAFileServer.ServiceName. The value of the registration format is {0}.{1}@ {2} by
default and is passed to the static method java.text.MessageFormat.format() as shown in the
following code snippet:

String format =getProperty("CORBAFileServer.RegistrationFormat", "{0}.{1}e{2}");
String serviceName =getProperty("CORBAFileServer.ServiceName");
String registerName = MessageFormat.format(format, new Object[] {

serviceName, "FileServer", getHostname()});

{0}

the service name.

{1}

the string value FileServer

{2}

the hostname.

Suppose the hostname of your server system is sequoia, your service name is drain and you are
using the default behavior, then the registration name becomes:

CORBA File Server Specification

O © 2015/10/07 CORBAFileServer 2.1.9
u

X nghQSoft HighQSoft Andreas Hofmann

http://www.highqsoft.com
mailto:andreas.hofmann@highqsoft.de

3.5 String from Command Line 9

drain.FileServer@sequoia

The server prints the registration name at startup time.

If you want to use the libraries on client side also, the hostname parameter will be the problem.
The easiest way to do the right things is to pass the whole service name to the client and reduce
the registration format to the first parameter.

CORBAFileServer.RegistrationFormat = {0}
CORBAFileServer.ServiceName = drain.FileServer@sequoia

By this way the client is able to use the same method to determine the service name.

3.5 String from Command Line

The server can be started from command:

$ java -jar CORBAFileServer.jar

The arguments are evaluated by the following rules:

e Arguments are handled as properties. That means each property is described by a keaword
and a value.

e Each keyword has a leading minus -’ that will removed by the evaluation.
e The value of a property is separated by space and is located directly behind the keyword.

e It is allowed to omit the value for boolean value if the value should be true.

e.g.

$ java -jar CORBAFileServer.jar -CORBAFileServer.SecurityActive false

3.6 Starting as MS-Windows System Service

The CORBAFileServer is startable as system service for MS-Windows operating system.
Use our JVMService tool to configure and install the service. The startup class
com.highgsoft.avalon.CORBAFileServerService should be used for that issue. See the docu-
mentation of the JVMService for more information.

3.7 Using SSL for secure socket-based Transfers

The CORBAFileServer supports the encryption of socket-based transfers. This means that the
methods

e getBySocket(...)
e getForInstanceBySocket(...)
e setBySocket(...)

CORBA File Server Specification

© 2015/10/07 CORBAFileServer 2.1.9 O
n

HighQSOft Andreas Hofmann nghQSoﬂ

|

http://www.highqsoft.com
mailto:andreas.hofmann@highqsoft.de

10 Server

¢ setForInstanceBySocket(...)

can transfer a data stream using the SSL facilities of Java. To do this, the CORBAFileServer
supports a property called CORBAFileServer.useSSL. The value of this property is either true
or false. If set to true, the CORBAFileServer will initiate SSLSockets and SSLServerSockets. In
order to successfully use this feature, the administration of the CORBAFileServer has to provide
valid key- and truststores to the Java VM. For more information regarding Java and SSL, see the
documentation at oracle.com. In case the default key-/truststore of Java does not contain the
keys/certificates used by the administration, the following startup arguments should be provided:

For the CFS client:

-Djavax.net.ssl.keyStore=/path/to/keystore
-Djavax.net.ssl.keyStorePassword=<keystore-password>

For the CFS:

-Djavax.net.ssl.trustStore=/path/to/truststore
-Djavax.net.ssl.trustStorePassword=<truststore-password>

Since the CFS client provides the ServerSocket, it needs a private key from the keystore to oper-
ate. The CFS itself uses the Socket and therefore needs a truststore with the public key of the
ServerSocket.

The java tool keytool can be used to generate/manage the key-/truststores for the client and
server. For more information on how to use keytool, please consult the tutorials at oracle.com.

CORBA File Server Specification

O © 2015/10/07 CORBAFileServer 2.1.9
u

X nghQSoft HighQSoft Andreas Hofmann

http://www.highqsoft.com
mailto:andreas.hofmann@highqsoft.de

Chapter 4
Interfaces

The CORBA IDL is located in the source code folder tree.

etc/corbafileserver.idl
The file idlcompiler.bat can be used to generated the JAVA code.

I R R rmrrrommmn
// corbafileserver.idl

// This is the interface to the server.

// $Log: corbafileserver.idl,v $
// Revision 1.20 2014/12/04 10:30:26 alex
// Updated javadoc of close() and InputStreamIF

// Revision 1.19 2011/12/05 15:27:14 karst
// Add new error code.

// Revision 1.18 2011/12/05 14:41:49 alex
// Replaced typedef DS_LONG with LONG_ARRAY to avoid complications with ODS typedefs

// Revision 1.17 2011/12/02 15:07:58 alex
// Added new method CORBAFileServer.getSizes
// Increased INTFERFACEVERSION to 1.3

// Revision 1.16 2011/12/02 14:08:55 alex

// getVersion now reads the value from the IDL files

// instead from hardcoded java value

// Added new FileNameHandlerExt implementation that

// serves as wrapper for old FileNameHandlerIF

// implementations

// Modified CFS to cast FileNameHandlers to FileNameHandlerExtIF and wrap them if necessary

// Revision 1.156 2010/09/06 08:11:09 andy
// [getSize(D#1393] Send a better exception when the URL doesn’t exist or the file doesn’t exist.

// Revision 1.14 2010/03/31 12:06:57 elke
// added note about keeping string version up to date

// Revision 1.13 2010/03/31 10:02:51 elke
// new functions: getSize, getSizeForInstance and getInterfaceVersion

// Revision 1.12 2010/03/12 14:58:16 andy
// Changes made by Reiner Knbl (EPOS/CAT) for the MDM/IDL3 compatibility.

// Revision 1.12 2010/03/12 15:27:00 knoebl

12 Interfaces

// Use the 0DS 5.20 IDL
// Renamed paramters named "port" to "aPort" to avoid the IDL3 reserved word "port".

// Revision 1.11 2009/12/17 12:21:20 karst
// Use the 0DS 5.2 IDL.

// Revision 1.10 2008/08/27 07:06:41 andy
// Quote system call.

// Revision 1.9 2007/05/24 12:12:06 andy
// Translate the documentation.
// Add more details about the registration format.

// Revision 1.8 2006/11/24 09:38:37 andy
// Termnate method added.

// Revision 1.7 2006/11/17 11:33:56 andy
// Enable the client to set the destination subfolder.

// Revision 1.6 2006/11/16 14:17:15 andy
// Socket stuff added.

// Revision 1.5 2006/11/14 10:33:39 andy
// Add the method reset() and length() to the input stream.

// Revision 1.4 2006/10/04 11:07:14 andy
// Move functionality added.

// Revision 1.3 2006/07/14 11:09:56 andy
// Add an exception and regenerated the code.

// Revision 1.2 2006/07/14 10:54:59 andy
// Methods added to the idl and newly generated.

// Revision 1.1 2006/01/20 14:32:17 andy
// Initial CVS-revision.

//***

//***
//***

//

// Please Note:

//

// If functionality of this module is added/removed/changed
// please increase the version number in String ’version’
// of module Corbafileserver.java:

// public static final String version = "1.0";

// The function getInterfaceVersion returns that string!

//

//***
//***

#include "odsb20.idl"

module com {

module highgsoft {
module corbafileserver {
module generated {

typedef sequence<octet> DS_BYTE;
typedef sequence<string> DS_STRING;
typedef sequence<long long> LONG_ARRAY;

/**
* The error code.

CORBA File Server Specification

O © 2015/10/07 CORBAFileServer 2.1.9
u

3 nghQSoft HighQSoft Andreas Hofmann

http://www.highqsoft.com
mailto:andreas.hofmann@highqsoft.de

13

*/

enum ErrorCode {
FILESERVER_ASAMODS_EXCEPTION,
FILESERVER_ACCESS_DENIED,
FILESERVER_FILE_NOT_FQOUND,
FILESERVER_IO_EXCEPTION,
FILESERVER_INFORMATION,
FILESERVER_BAD_PARAMETER,
FILESERVER_MISSING_PARAMETER,
FILESERVER_CONNECT_FAILED,
FILESERVER_CONNECT_REFUSED,
FILESERVER_CONNECTION_LOST,
FILESERVER_IMPLEMENTATION_PROBLEM,
FILESERVER_NOT_IMPLEMENTED,
FILESERVER_NO_MEMORY,
FILESERVER_NULL_PARAMETER,
FILESERVER_NOT_FOUND

}s

/**

* The error severity flags.

*/

enum SeverityFlag {
SUCCESS, // Ok.
INFORMATION, // Information.
WARNING, // Warning.
ERROR // Error.

};

/**
* The CORBAFileServer exception structure.
*/
exception CORBAFileServerException {
ErrorCode errCode;
SeverityFlag sevFlag;
string reason;

}
/**
The interface provides a method to read a certain amount of bytes from the

well as close it.

R K I

* This includes the stream itself if it is kept in the POA’s active object map.
*/
interface InputStreamIF {

The InputStreamIF is used to simulate the behavior of a Java InputStream over CORBA.

InputStreamIF. The interface provides methods to get information about the stream as

Closing the stream is very important! The method must clean all server-side resource.

/**

* Reads up to len bytes of data from the input stream into an array

* of bytes. An attempt is made to read as many as len bytes, but a

* smaller number may be read, possibly zero. The number of bytes

* actually read is returned as an integer.

%

* This method blocks until input data is available, end of file

* is detected, or an exception is thrown.

*

* If b is null, a NullPointerException is thrown.

*

* If off is negative, or len is negative, or off+len is greater

* than the length of the array b, then an IndexOutOfBoundsException is thrown.
*

* If len is zero, then no bytes are read and 0 is returned;

* otherwise, there is an attempt to read at least one byte.

* If no byte is available because the stream is at end of file,

* the value -1 is returned; otherwise, at least one byte is read and stored into b.

CORBA File Server Specification
© 2015/10/07 CORBAFileServer 2.1.9
HighQSoft Andreas Hofmann

Q

ighQSoft

http://www.highqsoft.com
mailto:andreas.hofmann@highqsoft.de

14 Interfaces

The first byte read is stored into element b[off], the next one into bloff+1],

and so on. The number of bytes read is, at most, equal to len. Let k be the number

of bytes actually read; these bytes will be stored in elements b[off] through bloff+k-1],
leaving elements b[off+k] through b[off+len-1] unaffected.

In every case, elements b[0] through b[off] and elements bloff+len]
through b[b.length-1] are unaffected.

If the first byte cannot be read for any reason other than end of file,
then an IOException is thrown. In particular, an IOException is thrown
if the input stream has been closed.

*

%

*

Fs

*

*

Fs

*

%

*

%

*

*

* The read(b, off, len) method for class InputStream simply calls the method
* read() repeatedly. If the first such call results in an IOException,

* that exception is returned from the call to the read(b, off, len) method.
* If any subsequent call to read() results in a IOException, the exception

* is caught and treated as if it were end of file; the bytes read up to that
* point are stored into b and the number of bytes read before the exception
* occurred is returned. Subclasses are encouraged to provide a more efficient
* implementation of this method.

*
Fs
*
%
*
%
*
*

Oparam b - the buffer into which the data is read.
@param off - the start offset in array b at which the data is written.
Q@param len - the maximum number of bytes to read.
@return the total number of bytes read into the buffer,
or -1 is there is no more data because the end
of the stream has been reached.
Q@throws CORBAFileServerException if an IO exception occurs.
*/
long read(out DS_BYTE b,
in long off,
in long len)
raises (CORBAFileServerException);

/**
* Close the input stream. This method also can remove the object from the
* server’s active object map. After this method is called, any other invocation
* to a method of its object WILL lead to a CORBAException!
*
* Q@throws CORBAFileServerException if an I0 exception occurs.
*/
void close()
raises (CORBAFileServerException);

/**
* Get the length of the input stream.
%
* @return the length of the file to be transferd.
* Q@throws CORBAFileServerException if an I0 exception occurs.
*/
long length()
raises (CORBAFileServerException);

/**
* Reset the stream
*
* Q@throws CORBAFileServerException if an I0 exception occurs.
*/
void reset()
raises (CORBAFileServerException);
};

interface CORBAFileServerlIF {

/*

* The version number of the IDL

CORBA File Server Specification

o © 2015/10/07 CORBAFileServer 2.1.9
u

3 HighQSoft HighQSoft Andreas Hofmann

http://www.highqsoft.com
mailto:andreas.hofmann@highqsoft.de

15

*/

const string INTERFACEVERSION = "1.3";

/*%

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*/

Save the data associated with the given intput stream.

@throws CORBAFileServerException

with the following possible error codes:
FILESERVER_CONNECT _FAILED
FILESERVER_BAD_PARAMETER
FILESERVER_CONNECTION_LOST
FILESERVER_IMPLEMENTATION_PROBLEM
FILESERVER_NOT_IMPLEMENTED
FILESERVER_NO_MEMORY

@param aoSess the ASAM 0ODS session.
@param name the name of the file.
@param subDir an alternative sub directory, that can be specified,
if the filename should not used to determine the destination folder.
Oparam stream the input stream, ready to read by the server.
@return the url string of the created file.

string save (

in org::asam::ods::AoSession aoSess,
in string name,

in string subDir,

in InputStreamIF stream)

raises (CORBAFileServerException);

YELS

¥R K K K K K K K K X K X K K K K K K ¥ K

*/

Save the data associated with the given intput stream.
Specify the ApplicationElement id and the InstanceElement id
of the component that holds the external reference.

Q@throws CORBAFileServerException

with the following possible error codes:
FILESERVER_CONNECT _FAILED
FILESERVER_BAD_PARAMETER
FILESERVER_CONNECTION_LOST
FILESERVER_IMPLEMENTATION_PROBLEM
FILESERVER_NOT_IMPLEMENTED
FILESERVER_NO_MEMORY

@param aoSess the ASAM 0ODS session.
Oparam name the name of the file.
@param subDir an alternative sub directory, that can be specified,
if the filename should not used to determine the destination folder.
@param aid the application element id.
@param iid the instance element id.
@param stream the input stream, ready to read by the server.
@return the url string of the created file.

string saveForInstance (

in org::asam::ods::AoSession aoSess,
in string name,

in string subDir,

in org::asam::ods::T_LONGLONG aid,
in org::asam::ods::T_LONGLONG iid,
in InputStreamIF stream)

raises (CORBAFileServerException);

YELS

Save the data associated with the given intput stream.
Specify the name of an applciation element and the name of the instance element
that holds the external reference

CORBA File Server Specification
© 2015/10/07 CORBAFileServer 2.1.9
HighQSoft Andreas Hofmann

Q

ighQSoft

http://www.highqsoft.com
mailto:andreas.hofmann@highqsoft.de

16 Interfaces

@throws CORBAFileServerException

with the following possible error codes:
FILESERVER_CONNECT _FAILED
FILESERVER_BAD_PARAMETER
FILESERVER_CONNECTION_LOST
FILESERVER_IMPLEMENTATION_PROBLEM
FILESERVER_NOT_IMPLEMENTED
FILESERVER_NO_MEMORY

@param aoSess the ASAM 0ODS session.
@param name the name of the file.
O@param subDir an alternative sub directory, that can be specified,
if the filename should not used to determine the destination folder.
Oparam aeName the application element name.
@param ieName the instance element name.
Oparam stream the input stream, ready to read by the server.
@return the url string of the created file.

* K K K K X K X K X K K K K ¥ K ¥

*/
string saveForInstancelName (
in org::asam::ods::AoSession aoSess,
in string name,
in string subDir,
in string aelName,
in string ieName,
in InputStreamIF stream)
raises (CORBAFileServerException);

[**

* Delete the data associated with the given name.
%

* Q@throws CORBAFileServerException

* with the following possible error codes:
* FILESERVER_CONNECT _FAILED

* FILESERVER_BAD_PARAMETER

* FILESERVER_CONNECTION_LOST

* FILESERVER_IMPLEMENTATION_PROBLEM

* FILESERVER_NOT_IMPLEMENTED

* FILESERVER_NO_MEMORY

Fs

* Q@param aoSess the ASAM 0ODS session.
* Q@param name the name of the file.
*/
void delete (
in org::asam::ods::AoSession aoSess,
in string name)
raises (CORBAFileServerException);

/**

* Move the data associated with the given name.
%

* Q@throws CORBAFileServerException

* with the following possible error codes:
* FILESERVER_CONNECT_FAILED

* FILESERVER_BAD_PARAMETER

* FILESERVER_CONNECTION_LOST

* FILESERVER_IMPLEMENTATION_PROBLEM

* FILESERVER_NOT_IMPLEMENTED

* FILESERVER_NO_MEMORY

%

* Q@param aoSess the ASAM 0ODS session.
* @param urlo the url of the file.
*/
void move (
in org::asam::ods::AoSession aoSess,
in string url)
raises (CORBAFileServerException);

CORBA File Server Specification

o © 2015/10/07 CORBAFileServer 2.1.9
u

3 HighQSoft HighQSoft Andreas Hofmann

http://www.highqsoft.com
mailto:andreas.hofmann@highqsoft.de

17

/**

Delete the data associated with the given name.

Specify the ApplicationElement id and the InstanceElement id
of the component that holds the external reference.

O@throws CORBAFileServerException

with the following possible error codes:
FILESERVER_CONNECT_FAILED
FILESERVER_BAD_PARAMETER
FILESERVER_CONNECTION_LOST
FILESERVER_IMPLEMENTATION_PROBLEM
FILESERVER_NOT_IMPLEMENTED
FILESERVER_NO_MEMORY

Oparam aoSess the ASAM ODS session.
@param url the url of the file.
@param aid the application element id.
@param iid the instance element id.

* K K K K K K X K X K K K K K K ¥

*/

void deleteForInstance (
in org::asam::ods::AoSession aoSess,
in string url,
in org::asam::ods::T_LONGLONG aid,
in org::asam::ods::T_LONGLONG iid)
raises (CORBAFileServerException);

[**

Move the data associated with the given name.

Specify the ApplicationElement id and the InstanceElement id
of the component that holds the external reference.

@throws CORBAFileServerException

with the following possible error codes:
FILESERVER_CONNECT _FAILED
FILESERVER_BAD_PARAMETER
FILESERVER_CONNECTION_LOST
FILESERVER_IMPLEMENTATION_PROBLEM
FILESERVER_NOT_IMPLEMENTED
FILESERVER_NO_MEMORY

@param aoSess the ASAM 0ODS session.
@param name the name of the file.
Oparam aid the application element id.
@param iid the instance element id.

¥ OK K K K X K K K K K K X K K K K

*/

void moveForInstance (
in org::asam::ods::AoSession aoSess,
in string name,
in org::asam::ods::T_LONGLONG aid,
in org::asam::ods::T_LONGLONG iid)
raises (CORBAFileServerException);

/**
* Get the data using a socket.

@throws CORBAFileServerException

with the following possible error codes:
FILESERVER_CONNECT_FAILED
FILESERVER_BAD_PARAMETER
FILESERVER_CONNECTION_LOST
FILESERVER_IMPLEMENTATION_PROBLEM
FILESERVER_NOT_IMPLEMENTED
FILESERVER_NO_MEMORY

* K X K X K X X ¥ X ¥

Oparam aoSess the ASAM ODS session.

CORBA File Server Specification

© 2015/10/07 CORBAFileServer 2.1.9 O
[|

HighQSoft Andreas Hofmann nghQSoft

—

http://www.highqsoft.com
mailto:andreas.hofmann@highqsoft.de

18

Interfaces

* Q@param name the name of the file.
* @param host the hostname for the socket connection.
* Q@param port the port for the socket connection.

*/

void getBySocket(

/%

in org::asam::ods::AoSession aoSess,
in string name,

in string host,

in long aPort)

raises (CORBAFileServerException);

* Get the data using a socket.

*

Qparam
@param
Qparam
@param
@param
Q@param

O K X K X K X X K X K X ¥ ¥

*/

@throws CORBAFileServerException

with the following possible error codes:
FILESERVER_CONNECT_FAILED
FILESERVER_BAD_PARAMETER
FILESERVER_CONNECTION_LOST
FILESERVER_IMPLEMENTATION_PROBLEM
FILESERVER_NOT_IMPLEMENTED
FILESERVER_NO_MEMORY

aoSess the ASAM 0ODS session.

name the url specification of the file.

aid the application element id.

iid the instance element id.

host the hostname for the socket connection.
port the port for the socket connection.

void getForInstanceBySocket (

*

Q@param
Q@param
Qparam

Qparam
@param
Q@retur

* K X K X K X X K X K X K X X K ¥ * ¥

*/

n

in org::asam::ods::AoSession aoSess,
in string name,

in org::asam::ods::T_LONGLONG aid,
in org::asam::ods::T_LONGLONG iid,
in string host,

in long aPort)

raises (CORBAFileServerException);

Save the data using a socket.

Q@throws CORBAFileServerException

with the following possible error codes:
FILESERVER_CONNECT_FAILED
FILESERVER_BAD_PARAMETER
FILESERVER_CONNECTION_LOST
FILESERVER_IMPLEMENTATION_PROBLEM
FILESERVER_NOT_IMPLEMENTED
FILESERVER_NO_MEMORY

aoSess the ASAM 0DS session.
name the name of the file.
subDir an alternative sub directory, that can be specified,
if the filename should not used to determine the destination folder.
host the hostname for the socket connection.
port the port for the socket comnnection.
the url string of the created file.

string saveBySocket(

in
in
in
in
in
ra

org::asam::ods::AoSession aoSess,
string name,

string subDir,

string host,

long aPort)

ises (CORBAFileServerException);

CORBA File Server Specification
© 2015/10/07 CORBAFileServer 2.1.9

‘ ‘. ' HighQSoft HighQSoft Andreas Hofmann

http://www.highqsoft.com
mailto:andreas.hofmann@highqsoft.de

19

*

* oK XK K X K X X X X K X K X K K X K ¥ K X

*/

Save the data using a socket.

Q@throws CORBAFileServerException

with the following possible error codes:
FILESERVER_CONNECT_FAILED
FILESERVER_BAD_PARAMETER
FILESERVER_CONNECTION_LOST
FILESERVER_IMPLEMENTATION_PROBLEM
FILESERVER_NOT_IMPLEMENTED
FILESERVER_NO_MEMORY

Q@param
Q@param
Q@param

Qparam
@param
@param
@param
Q@retur

n

aoSess the ASAM ODS session.
name the name of the file.
subDir an alternative sub directory, that can be specified,

if the filename should not used to determine the destination folder.

aid the application element id.

iid the instance element id.

host the hostname for the socket connection.
port the port for the socket connection.

the url string of the created file.

string saveForInstanceBySocket(

VAL

in org::asam::ods::AoSession aoSess,
in string name,

in string subDir,

in org::asam::ods::T_LONGLONG aid,
in org::asam::ods::T_LONGLONG iid,
in string host,

in long aPort)

raises (CORBAFileServerException);

* Save the data using a socket.

*

¥ O K K X K X K X X K X K X K X X ¥

*/

Q@throws CORBAFileServerException

with the following possible error codes:
FILESERVER_CONNECT_FAILED
FILESERVER_BAD_PARAMETER
FILESERVER_CONNECTION_LOST
FILESERVER_IMPLEMENTATION_PROBLEM
FILESERVER_NOT_IMPLEMENTED
FILESERVER_NO_MEMORY

Q@param
@param
Qparam

Q@param
@param
@param
Q@param
Qretur:

n

aoSess the ASAM 0ODS session.
name the name of the file.
subDir an alternative sub directory, that can be specified,

if the filename should not used to determine the destination folder.

aeName the application element name.

ieName the instance element name.

host the hostname for the socket connection.
port the port for the socket connection.

the url string of the created file.

string saveForInstanceNameBySocket(

VAL

in
in
in
in
in
in
in
ra

org::asam::ods::AoSession aoSess,
string name,

string subDir,

string aelName,

string ielName,

string host,

long aPort)

ises (CORBAFileServerException);

* Read the data associated with the given name.

*

CORBA F